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Abstract

Recently, it has been shown that mathematical programs with complementarity
constraints (MPCCs) can be solved efficiently and reliably as nonlinear programs.
This paper examines various nonlinear formulations of the complementarity con-
straints. Several nonlinear complementarity functions are considered for use in
MPCC. Unlike standard smoothing techniques, however, the reformulations do not
require the control of a smoothing parameter. Thus they have the advantage that
the smoothing is exact in the sense that Karush-Kuhn-Tucker points of the reformu-
lation correspond to strongly stationary points of the MPCC. A new exact smoothing

of the well-known min function is also introduced and shown to possess desirable
theoretical properties. It is shown how the new formulations can be integrated
into a sequential quadratic programming solver, and their practical performance is
compared on a range of test problems.
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1 Introduction

Equilibrium constraints in the form of complementarity conditions often appear as con-
straints in optimization problems, giving rise to mathematical programs with comple-
mentarity constraints (MPCCs). Problems of this type arise in many engineering and
economic applications; see the survey [11] and the monographs [24, 26]. The growing
collections of test problems [22, 7] indicate that this an important area. MPCCs can be
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expressed in general as

minimize f(x) (1.1a)

subject to cE(x) = 0 (1.1b)

cI(x) ≥ 0 (1.1c)

0 ≤ x1 ⊥ x2 ≥ 0, (1.1d)

where x = (x0, x1, x2) is a decomposition of the problem variables into controls x0 ∈ IRn

and states x1, x2 ∈ IRp. The equality constraints ci(x) = 0, i ∈ E are abbreviated as
cE(x) = 0, and similarly cI(x) ≥ 0 represents the inequality constraints. The notation
⊥ represents complementarity and means that either a component x1i = 0 or the corre-
sponding component x2i = 0.

Clearly, more general complementarity constraints can be included in (1.1) by adding
slack variables. Adding slacks does not destroy any properties of the MPCC such as
constraint qualification or second-order condition. One convenient way of solving (1.1) is
to replace the complementarity conditions (1.1d) by

x1, x2 ≥ 0, and X1x2 ≤ 0, (1.2)

where X1 is a diagonal matrix with x1 along its diagonal. This transforms the MPCC
into an equivalent nonlinear program (NLP) and is appealing because it appears to allow
standard large-scale NLP solvers to be used to solve (1.1).

Unfortunately, it has been shown [5, 29] that (1.2) violates the Mangasarian-Fromovitz
constraint qualification (MFCQ) at any feasible point. This failure of MFCQ has a number
of unpleasant consequences: The multiplier set is unbounded, the central path fails to
exist, the active constraint normals are linearly dependent, and linearizations of the NLP
can be inconsistent arbitrarily close to a solution. In addition, early numerical experience
with (1.2) has been disappointing [2]. As a consequence, solving MPCCs as NLPs has
been commonly regarded as numerically unsafe.

Recently, exciting new developments have demonstrated that the gloomy prognosis
about the use of (1.2) may have been premature. Standard sequential quadratic program-
ming (SQP) solvers have been used to solve a large class of MPCCs, written as NLPs,
reliably and efficiently [16]. This numerical success has motivated a closer investigation of
the (local) convergence properties of SQP methods for MPCCs. In [17], it is shown that
an SQP method converges locally to strongly stationary points. Anitescu [1] establishes
that an SQP method with elastic mode converges locally for MPCCs with (1.2). The
key idea is to penalize X1x2 ≤ 0 and consider the resulting NLP, which satisfies MFCQ.
Near a strongly stationary point, a sufficiently large penalty parameter can be found, and
standard SQP methods converge.

The convergence properties of interior point methods (IPMs) have also received re-
newed attention. Numerical experiments [3, 28] have shown that IPMs with minor modifi-
cations can be applied successfully to solve MPCCs. This practical success has encouraged
theoretical studies of the convergence properties of IPMs for MPCCs. Raghunathan and
Biegler [27] relax xT

1 x2 ≤ 0 by a quantity proportional to the barrier parameter, which
is driven to zero. Liu and Sun [23] propose a primal-dual IPM that also relaxes the
complementarity constraint.
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In this paper, we extend our results of [17] by considering NLP formulations of (1.1) in
which the complementarity constraint (1.1d) is replaced by an nonlinear complementarity
problem (NCP) function. This gives rise to the following NLP:

minimize f(x) (1.3a)

subject to cE(x) = 0 (1.3b)

cI(x) ≥ 0 (1.3c)

x1, x2 ≥ 0, Φ(x1i, x2i) ≤ 0, (1.3d)

where Φ(x1, x2) is the vector of NCP functions, Φ(x1, x2) = (φ(x11, x21), . . . , φ(x1p, x2p))
T ,

and φ is any NCP function introduced in the next section. Problem (1.3) is in general
nonsmooth because the NCP functions used in (1.3d) are nonsmooth at the origin. We
will show that this nonsmoothness does not affect the local convergence properties of the
SQP method.

The use of NCP functions for the solution of MPCCs has been considered in [8, 10],
where a sequence of smoothed NCP reformulation is solved. Our contribution is to show
that this smoothing is not required. Thus we avoid the need to control the smoothing
parameter that may be problematic in practice. Moreover, the direct use of NCP functions
makes our approach exact, in the sense that first-order points of the resulting NLP coincide
with strongly stationary points of the MPCC. As a consequence we can prove superlinear
convergence under reasonable assumptions.

The paper is organized as follows. The next section reviews the NCP functions that
will be used in (1.3d) and their pertinent properties. We also introduce new NCP functions
shown to possess certain desirable properties. Section 3 shows the equivalence of first-order
points of (1.1) and (1.3). Section 4 formally introduces the SQP algorithm for solving
MPCCs. The equivalence of the first-order conditions forms the basis of the convergence
proof of the SQP method, presented in Section 5. In Section 6, we examine the practical
performance of the different NCP functions on the MacMPEC test set [22]. In Section 7
we summarize our work and briefly discuss open questions.

2 NCP Functions for MPCCs

An NCP function is a function φ : IR2 → IR such that φ(a, b) = 0 if and only if a, b ≥ 0,
and ab ≤ 0. Several NCP functions can be used in the reformulation (1.3). Here, we
review some existing NCP functions and introduce new ones that have certain desirable
properties.

1. The bilinear form
φBL(a, b) = ab, (2.4)

which is analytic and has the appealing property that its gradient vanishes at the
origin (this makes it consistent with strong stationarity, as will be shown later). It
is not an NCP function, however, since φBL(a, b) = 0 does not imply nonnegativity
of a, b.

2. The Fischer-Burmeister function [12] is given by

φFB(a, b) = a + b −
√

a2 + b2. (2.5)
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It is nondifferentiable at the origin, and its Hessian is unbounded at the origin.

3. The min-function [6] is the nonsmooth function

φmin(a, b) = min(a, b). (2.6)

It can be written equivalently in terms of the natural residual function [6]:

φNR(a, b) =
1

2

(
a + b −

√
(a − b)2

)
. (2.7)

This function is again nondifferentiable at the origin and along the line a = b.

4. The Chen-Chen-Kanzow function [4] is a convex combination of the Fischer-Burmeister
function and the bilinear function. For a fixed parameter λ ∈ (0, 1), it is defined as

φCCK(a, b) = λφFB(a, b) + (1 − λ)a+b+,

where a+ = max(0, a). Note that for a ≥ 0, a+ = a; hence, for any method that
remains feasible with respect to the simple bounds,

φCCK(a, b) = λφFB(a, b) + (1 − λ)φBL(a, b) (2.8)

holds.

We note that all functions (except for (2.4)) are nondifferentiable at the origin. In addition,
the Hessian of the Fischer-Burmeister function is unbounded at the origin. This has to
be taken into account in the design of robust SQP methods for MPCCs.

The min-function has the appealing property that linearizations of the resulting NLP
(1.3) are consistent sufficiently close to a strongly stationary point (see Proposition 3.6).
This property motivates the derivation of smooth approximations of the min-function.
The first approximation is obtained by smoothing the equivalent natural residual function
(2.7) by adding a term to the square root (which causes the discontinuity along a = b).
For a fixed parameter σNR > 1/2, let

φNRs(a, b) =
1

2

(
a + b −

√
(a − b)2 +

ab

σNR

)
. (2.9)

This smoothing is similar to [6, 10], where a positive parameter 4µ2 > 0 is added to
the discriminant. This has the effect that complementarity is satisfied only up to µ2

at the solution. In contrast, adding the term ab/σNR, implies that the NCP function
remains exact in the sense that φNRs(a, b) = 0 if and only if a, b ≥ 0 and ab = 0 for any
σNR > 1/2. Figure 2 shows the contours of φNRs(a, b) for σNR = 32 and for the min-function
(σNR = ∞). An interesting observation is that as σNR → 1

2
, the smoothed min-function

φNRs(a, b) becomes the Fischer-Burmeister function (up to a scaling factor).
An alternative way to smooth the natural residual function is to work directly on

smoothing the contours of the min-function, which are piecewise constant. The contours
can be smoothed by dividing the positive orthant into (for example) three regions as
shown in Figure 1. The dashed lines separate the three regions (i) to (iii), and their
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(ii)
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σ
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Figure 1: Piecewise regions for smoothing the min-function

slope is σ > 1 and σ−1, respectively. In regions (i) and (iii), the contours are identical
to the min-function. This feature ensures consistency of the linearization. In region (ii),
different degrees of smoothing can be applied.

The first smoothed min-function is based on a piecewise linear approximation, given
by

φlin(a, b) =






b b ≤ a/σl

(a + b)/(1 + σl) a/σl < b < σla
a b ≥ σla,

(2.10)

where σ = σl > 1 is the parameter that defines the three regions in Figure 1. The idea
is that close to the axis, the min-function is used, while for values of a, b that are in the
center, the decision as to which should be zero is delayed.

The second smoothed min-function is based on the idea of joining the linear parts in
sectors (i) and (iii) with circle segments. This gives rise to the following function,

φqua(a, b) =






b b ≤ a/σq√
(a − θ)2 + (b − θ)2

(σq − 1)2
a/σq < b < σqa

a b ≥ σqa,

(2.11)

where θ is the center of the circle, depending on a, b, and σq and is given by

θ =
a + b

2 − (σq−1)2

σ2
q

+

√√√√√



 a + b

2 − (σq−1)2

σ2
q




2

− a2 + b2

2 − (σq−1)2

σ2
q

.

The contours of both smoothing functions are given in Figure 2. Note that the con-
tours are parallel to the axis in regions (i) and (iii). This fact will be exploited to show
that linearizations of the min-function and its two variants remain consistent arbitrarily
close to a strongly stationary point. This observation, in effect, establishes a constraint
qualification for the equivalent NLP (1.3).

The smoothing also avoids another undesirable property of the min-function: It projects
iterates that are far from complementary onto the nearest axis. Close to the axis a = b, this
projection results in an arbitrary step. Consider, for example, a point a = 99, b = 101.
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Figure 2: Contours of the min-function, the smoothed natural residual function, the
piecewise linear min-function, and the piecewise quadratic with σl = σq = 3

Linearizing the min-function about this point results in a first-order approximation in
which a = 0, b ≥ 0. In contrast, other NCP functions “delay” this decision and can be
viewed as smoothing methods.

3 Equivalence of First-Order Conditions

This section shows that there exists a one-to-one correspondence between strongly sta-
tionary points of the MPCC (1.1) and the first-order stationary points of the equivalent
NLP (1.3). We start by reviewing MPCC stationarity concepts. Next, we derive some
properties of the linearizations of (1.3d) that play a crucial role in the equivalence of
first-order conditions.

3.1 Strong Stationarity for MPCCs

The pertinent condition for stationarity for analyzing NLP solvers applied to (1.3) is strong
stationarity. The reason is that there exists a relationship between strong stationarity [29]
and the Karush-Kuhn-Tucker (KKT) points of (1.3). This relationship has been exploited
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in [17] to establish convergence of SQP methods for MPCCs formulated as NLPs. Strong
stationarity is defined as follows.

Definition 3.1 A point x is called strongly stationary if and only if there exist multipliers
λ, ν̂1, and ν̂2 such that

∇f(x) −∇cT (x)λ −




0
ν̂1

ν̂2



 = 0

cE(x) = 0
cI(x) ≥ 0

x1, x2 ≥ 0
x1j = 0 or x2j = 0

λI ≥ 0
ciλi = x1j ν̂1j = x2j ν̂2j = 0

if x1j = x2j = 0 then ν̂1j ≥ 0 and ν̂2j ≥ 0.

(3.1)

Strong stationarity can be interpreted as the KKT conditions of the relaxed NLP (3.2)
at a feasible point x. Given two index sets X1, X2 ⊂ {1, . . . , p} with

X1 ∪ X2 = {1, . . . , p} ,

denote their respective complements in {1, . . . , p} by X⊥
1 and X⊥

2 . For any such pair of
index sets, define the relaxed NLP corresponding to the MPCC (1.1) as

minimize
x

f(x)

subject to cE(x) = 0
cI(x) ≥ 0
x1j = 0 ∀j ∈ X⊥

2 and x1j ≥ 0 ∀j ∈ X2

x2j = 0 ∀j ∈ X⊥
1 and x2j ≥ 0 ∀j ∈ X1.

(3.2)

Concepts such as MPCC constraint qualifications (CQs) and second-order conditions are
defined in terms of this relaxed NLP (see, e.g., [17]). Formally, the linear independence
constraint qualification (LICQ) is extended to MPCCs as follows:

Definition 3.2 The MPCC (1.1) is said to satisfy an MPCC-LICQ at x if the corre-
sponding relaxed NLP (3.2) satisfies an LICQ.

Next, a second-order sufficient condition (SOSC) for MPCCs is given. Like strong sta-
tionarity, it is related to the relaxed NLP (3.2). Let A∗ denote the set of active constraints
of (3.2) and A∗

+ ⊂ A∗ the set of active constraints with nonzero multipliers (some could
be negative). Let A denote the matrix of active constraint normals, that is,

A =



A∗
E : A∗

I∩A∗ :
0
I∗
1

0
:

0
0
I∗
2



 =: [a∗
i ]i∈A∗ ,
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where A∗
I∩A∗ are the active inequality constraint normals and

I∗
1 := [ei]i∈X ∗

1

and I∗
2 := [ei]i∈X ∗

2

are parts of the p× p identity matrices corresponding to active bounds. Define the set of
feasible directions of zero slope of the relaxed NLP (3.2) as

S∗ =
{

s | s 6= 0 , g∗T

s = 0 , a∗T

i s = 0 , i ∈ A∗
+ , a∗T

i s ≥ 0 , i ∈ A∗\A∗
+

}
.

The MPCC-SOSC is defined as follows.

Definition 3.3 A strongly stationary point z∗ with multipliers (λ∗, ν̂∗
1 , ν̂

∗
2) satisfies the

MPCC-SOSC if for every direction s ∈ S∗ it follows that sT∇2L∗s > 0, where ∇2L∗ is
the Hessian of the Lagrangian of (3.2) evaluated at (z∗, λ∗, ν̂∗

1 , ν̂
∗
2).

3.2 Linearizations of the NCP Functions

All NCP functions with the exception of the bilinear form are nonsmooth at the origin. In
addition, the min-function is also nonsmooth along a = b, and the linearized min-function
is nonsmooth along a = σ−1b and a = σb. Luckily, SQP methods converge for a simple
choice of subgradient.

We start by summarizing some well-known properties of the gradients of the Fischer-
Burmeister function (2.5) for (a, b) 6= (0, 0):

∇φFB(a, b) =




1 − a√

a2 + b2

1 − b√
a2 + b2



 .

It can be shown that 0 < 1 − a√
a2+b2

< 2 for all (a, b) 6= (0, 0). In addition, if a > 0 and
b > 0, it can be shown that

∇φFB(a, 0) =

(
0
1

)
and ∇φFB(0, b) =

(
1
0

)
.

Similarly, the gradient of the smoothed natural residual function is

∇φNRs(a, b) =
1

2





1 − a − b + b
2σ√

(a − b)2 + ab
σ

1 − b − a + a
2σ√

(a − b)2 + ab
σ




.

For a > 0 and b > 0, it follows that

∇φNRs(a, 0) =

(
0

1 − 1
4σ

)
and ∇φNRs(0, b) =

(
1 − 1

4σ

0

)
.
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Despite the fact that the NCP functions are not differentiable everywhere, it turns out
that a particular choice of subgradient gives fast convergence for SQP methods. To show
equivalence of the first-order conditions in [17], we exploit the fact that ∇φBL(0, 0) = 0.
Fortunately, 0 is a generalized gradient of the other NCP functions, that is, 0 ∈ ∂φ(0, 0).
Similarly, we will choose a suitable subgradient for the min-function along a = b. With a
slight abuse of notation, we summarize the subgradient convention:

Convention 3.4 The following convention is used for subgradients of the nonsmooth
NCP functions:

1. ∇φ(0, 0) = 0 for any NCP function.

2. ∇φmin(a, a) = (1
2
, 1

2
)T for the min-function for a > 0.

3. ∇φlin(a, σa) = (0, 1) and ∇φlin(a, σ−1a) = (1, 0) for the linearized min-function, for
a > 0.

This convention is consistent with the subgradients of the NCP functions and is readily
implemented. The most important convention is to ensure that ∇φ(0, 0) = 0 because,
otherwise, we would not be able to establish equivalence of first-order conditions. The
other conventions could be relaxed to allow other subgradients. The convention on the
subgradients also has an important practical implication. We have observed convergence
to M-stationary, or even C-stationary points that are not strongly stationary for other
choices of 0 6= v ∈ ∂φ(0, 0). Setting v = 0 ∈ ∂φ(0, 0) prevents convergence to such
spurious stationary points.

It turns out that a straightforward application of SQP to (1.3) is not very efficient
in practice. The reason is that the linearization of the complementarity constraint (1.2)
together with the lower bounds has no strict interior. Therefore, we relax the linearization
of (1.2). Let 0 < δ, κ < 1 be constants, and consider

a ≥ 0, b ≥ 0, φ(â, b̂) + ∇φ(â, b̂)T

(
a − â

b − b̂

)
≤ δ

(
min(1, φ(â, b̂))

)1+κ

. (3.3)

Clearly, this is a relaxation of the linearization of (1.2). The following proposition sum-
marizes some useful properties of the linearizations of the NCP functions.

Proposition 3.5 Let φ(a, b) be one of the functions (2.4)–(2.11). Then it follows that

1. a, b ≥ 0 and φ(a, b) ≤ 0 is equivalent to 0 ≤ a ⊥ b ≥ 0.

2. If â, b̂ ≥ 0 and â + b̂ > 0, then it follows that the perturbed system of inequalities
(3.3) is consistent for any 0 ≤ δ, κ ≤ 1. In addition, if δ > 0 and â, b̂ > 0, then (3.3)
has a nonempty interior for the Fischer-Burmeister function, the bilinear function,
and the smoothed natural residual function.
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Proof. Part 1 is obvious. For Part 2, consider each NCP function in turn. For the
bilinear function (2.4), it readily follows that (a, b) = (0, 0) is feasible in (3.3) because for
â, b̂ ≥ 0, we get

âb̂ + ∇φT
BL

( −â

−b̂

)
= −âb̂ ≤ 0,

and clearly, if δ > 0, there exists a nonempty interior.
Next consider the Fischer-Burmeister function (2.5), for which (3.3) with δ = 0 be-

comes (
1 − â√

â2 + b̂2

)
a +

(
1 − b̂√

â2 + b̂2

)
b ≤ 0.

Since the terms in the parentheses are positive, it follows that (a, b) = 0 is the only point
satisfying a, b ≥ 0 and (3.3). On the other hand, if δ > 0, then the right-hand side of
(3.3) is positive, and there exists a nonempty interior of a, b ≥ 0 and (3.3).

For (2.6) and (2.7), it follows for â < b̂ that (3.3) becomes a = 0, b ≥ 0. The conclusion

for â > b̂ follows similarly. If â = b̂, then (3.3) becomes 1
2
a + 1

2
b ≤ δ

(
min(1, φ(â, b̂))

)1+κ

,

and the results follow.
The result for (2.8) follows from the fact that (2.8) is a linear combination of the

Fischer-Burmeister function and (2.4).
To show the result for the smoothed min functions, we observe that for b ≤ a/σ

and b ≥ σa the functions are identical to the min-function and the result follows. For
a/σ < b < σa, we consider (2.10) and (2.11) in turn. The linearization of (2.10) is
equivalent to a + b ≤ 0, which implies feasibility. It can also be shown that linearization
of (2.11) about any point is feasible at the origin (a, b) = (0, 0).

The smoothed natural residual function also has feasible linearizations. For (2.9), (3.3)
is equivalent to (using σ = σNR to simplify the notation)

φNRs(â, b̂) +



1 − â − b̂ + b̂
2σ√

(â − b̂)2 + âb̂
σ



 (a − â) +



1 − b̂ − â + â
2σ√

(â − b̂)2 + âb̂
σ



 (b − b̂) ≤ 0.

Rearranging, we have

−φNRs(â, b̂) +



1 − â − b̂ + b̂
2σ√

(â − b̂)2 + âb̂
σ



 a +



1 − b̂ − â + â
2σ√

(â − b̂)2 + âb̂
σ



 b ≤ 0.

The first term is clearly nonpositive, and it can be shown that the terms multiplying a
and b are nonnegative, thus implying consistency and a nonempty interior, even when
δ = 0. �

A disadvantage of the functions (2.4), (2.8), and (2.9) is that arbitrarily close to a
strongly stationary point, the linearizations may be inconsistent [17]. The next proposition
shows that the min-function and its smoothed versions (2.10) and (2.11) do not have this
disadvantage.
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Proposition 3.6 Consider (1.3) using any of the min-functions, (2.6), (2.10), or (2.11),
and assume that the MPCC-MFCQ holds at a strongly stationary point. Then it follows
that the linearization of (1.3) is consistent for all x1, x2 ≥ 0 sufficiently close to this
strongly stationary point.

Proof. Under MPCC-MFCQ, it follows that the linearization of the relaxed NLP (3.2) is
consistent in a neighborhood of a strongly stationary point. Now consider the linearization
of the min-function near a strongly stationary point, x∗ say. For components i, such that
x∗

1i = 0 < x∗
2i, it follows for any point xk sufficiently close to x∗ that 0 ≤ xk

1i < xk
2i.

Thus, the linearization of the corresponding min-function gives d1i ≤ −xk
1i. Together

with the lower bound d1i ≥ −xk
1i, this is equivalent to d1i = −xk

1i, the linearization of
the same component in the relaxed NLP. A similar conclusion holds for components with
x∗

1i > 0 = x∗
2i.

Finally, for components i, such that x∗
1i = 0 = x∗

2i, it follows that the origin xk+1
1i =

xk+1
2i = 0 is feasible (Proposition 3.5). This point is also feasible for the relaxed NLP.

A similar argument can be made for the smoothed min-functions (2.10) and (2.11) by
observing that for x∗

1i = 0 < x∗
2i, there exists a neighborhood where these functions agree

with the min-function and for x∗
1i = 0 = x∗

2i, feasibility follows from Proposition 3.5. �

An important consequence of this proposition is that the quadratic convergence proof
for MPCCs in [17] can now be applied without the assumption that all QP subproblems
are consistent. In this sense, Proposition 3.6 implies that the equivalent NLP (1.3) using
the min-functions satisfies a constraint qualification.

3.3 NCP Functions and Strong Stationarity

A consequence of the gradient convention is that the gradients of all NCP functions have
the same structure. In particular, it follows that for a, b > 0

∇φ(a, 0) =

(
0
τa

)
∇φ(0, b) =

(
τb

0

)
∇φ(a, b) =

(
τb

τa

)
and ∇φ(0, 0) =

(
0
0

)

for some parameters τa, τb > 0 that depend on a, b and the NCP function. As a conse-
quence, we can generalize the proof of equivalence of first-order conditions from [17] to
all NCP functions from Section 2. Let Φ(x1, x2) denote the vector of functions φ(x1i, x2i).
The KKT conditions of (1.3) are that there exist multipliers µ := (λ, ν1, ν2, ξ) such that

∇f(x) −∇c(x)T λ −




0
ν1

ν2



+




0

∇x1
Φ(x1, x2)ξ

∇x2
Φ(x1, x2)ξ



 = 0

cE(x) = 0
cI(x) ≥ 0
x1, x2 ≥ 0

Φ(x1, x2) ≤ 0
λI ≥ 0

ν1, ν2 ≥ 0
ξ ≥ 0

ci(x)λi = x1jν1j = x2jν2j = 0 .

(3.4)
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There is also a complementarity condition ξT Φ(x1, x2) = 0, which is implied by feasibility
of x1, x2 and has been omitted. Note that the choice ∇φ(0, 0) = 0 makes (3.4) consistent
with strong stationarity, as will be shown next.

Theorem 3.7 (x∗, λ∗, ν̂1, ν̂2) is a strongly stationary point satisfying (3.1) if and only if
there exist multipliers (x∗, λ∗, ν∗

1 , ν
∗
2 , ξ

∗) satisfying the KKT conditions (3.4) of the equiv-
alent NLP (1.3). If φ is any of the NCP function of Section 2, then

ν̂1 = ν∗
1 − τ 1ξ

∗ (3.5a)

ν̂2 =ν∗
2 − τ 2ξ

∗, (3.5b)

where τ 1 and τ 2 are diagonal matrices of with τj, j = 1, 2 along their diagonals. Moreover,
τji = 0, if x1i = x2i = 0 and otherwise satisfies the relationship

τ1i =






1 if x2i > 0 for (2.5), (2.6), (2.7), (2.10), (2.11)
1 − 1

4σ
if x2i > 0 for (2.9)

x2i for (2.4)
λ + (1 − λ)x2i if x2i > 0 for (2.8)

(3.6)

and

τ2i =






1 if x1i > 0 for (2.5), (2.6), (2.7), (2.10), (2.11)
1 − 1

4σ
if x1i > 0 for (2.9)

x1i for (2.4)
λ + (1 − λ)x1i if x1i > 0 for (2.8).

(3.7)

Proof. Note that gradients ∇Φ have the same structure for all NCP functions used.
Then (3.5) follows by comparing (3.4) and (3.1) and taking the gradients of the NCP
functions into account. �

The failure of MFCQ for (1.3) implies that the multiplier set is unbounded. However,
this unboundedness occurs in a special way. The multipliers of (1.3) form a ray, similar
to [17], and there exists a multiplier of minimum norm, given by

ν∗
1i = max(ν̂1i, 0), (3.8a)

ν∗
2i = max(ν̂2i, 0), (3.8b)

ξ∗i =−min

(
ν̂1i

τ1i

,
ν̂2i

τ2i

, 0

)
. (3.8c)

This implies the following complementarity conditions for the multipliers

0 ≤ ν∗
1i ⊥ ξ∗i ≥ 0 and 0 ≤ ν∗

2i ⊥ ξ∗i ≥ 0. (3.9)

This multiplier will be referred to as the minimal, or basic, multiplier . This term is justi-
fied by the observation (to be proved below) that the constraint normals corresponding to
nonzero components of the basic multiplier are linearly independent, provided the MPCC
satisfies an LICQ.
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4 An SQP Algorithm for NCP Functions

This section describes an SQP algorithm for solving (1.3). The algorithm is an iterative
procedure that solves a quadratic programming (QP) approximation of (1.3) around the
iterate xk for a step d at each iteration:

(QP k)






minimize
d

gkT

d + 1
2
dT W kd

subject to ck
E + AkT

E d = 0

ck
I + AkT

I d ≥ 0
xk

1 + d1 ≥ 0
xk

2 + d2 ≥ 0

Φk + ∇x1
ΦkT

d1 + ∇x2
ΦkT

d2 ≤ δ
(
min(1, Φk)

)1+κ
,

where µk = (λk, νk
1 , νk

2 , ξk) and W k = ∇2L(xk, µk) is the Hessian of the Lagrangian of
(1.1):

W k = ∇2L(xk, µk) = ∇2f(xk) −
∑

i∈I∪E
λi∇2ci(x

k).

Note that the Hessian W k does not include entries corresponding to ∇2Φ. This omission
is deliberate as it avoids numerical difficulties near the origin, where ∇2φFB becomes
unbounded. It will be shown that this does not affect the convergence properties of SQP
methods.

The last constraint of (QP k) is the relaxation of the linearization of the complemen-
tarity condition (3.3). We will show that the perturbation does not impede fast local
convergence. Formally, the SQP algorithm is defined in Algorithm 1.

Let k = 0, x0 given
while not optimal do

Solve (QP k) for a step d
Set xk+1 = xk + d, and k = k + 1

Algorithm 1: Local SQP Algorithm for MPCCs

In practice, we also include a globalization scheme to stabilize SQP. In our case, we
use a filter [15] and a trust region to ensure convergence to stationary points [18]. The
convergence theory of filter methods allows for three possible outcomes [18, Theorem 1]:

(A) The algorithm terminates at a point that is locally infeasible.

(B) The algorithm converges to a Kuhn-Tucker point.

(C) The algorithm converges to a feasible point at which MFCQ fails.

Clearly, (B) cannot happen because (1.3) violates MFCQ at any feasible point. Outcome
(A) is typically associated with convergence to a local minimum of the norm of the
constraint violation and cannot be avoided unless global optimization techniques are used.
Therefore, we deal mainly with outcome (C) if we apply a filter algorithm to MPCC
formulated as NLPs (1.3). The next section presents a local convergence analysis of the
SQP algorithm applied to (1.3).
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5 Local Convergence of SQP for MPCCs

This section establishes superlinear convergence of SQP methods a strongly stationary
point under mild conditions. The notation τ 1, τ 2 introduced in Theorem 3.7 allows the
convergence analysis of all NCP functions to be unified. We note that the presence of the

perturbation term δ
(
min(1, Φk)

)1+κ
, with κ < 1, implies that we cannot obtain quadratic

convergence in general.

The convergence analysis is concerned with strongly stationary points. Let x∗ be a
strongly stationary point, and denote by A(x∗) the set of active general constraints:

A(x∗) := {i|ci(x
∗) = 0} .

We also denote the set of active bounds by

Xj(x
∗) := {i|xji = 0} for j = 1, 2

and let D(x∗) := X1(x
∗) ∩ X2(x

∗) be the set of degenerate indices associated with the
complementarity constraint.

Assumptions 5.1 We make the following assumptions:

[A0] The subgradients of the NCP functions are computed according to Convention 3.4.

[A1] The functions f and c are twice Lipschitz continuously differentiable.

[A2] (1.1) satisfies an MPCC-LICQ.

[A3] x∗ is a strongly stationary point that satisfies an MPCC-SOSC.

[A4] λi 6= 0, ∀i ∈ E∗, λ∗
i > 0, ∀i ∈ A∗ ∩ I, and either ν∗

1j > 0 and ν∗
2j > 0, ∀j ∈ D∗.

[A5] The QP solver always chooses a linearly independent basis.

We note that [A0] is readily implemented and that assumption [A5] holds for the
QP solvers used within snopt [20] and filter [15]. The most restrictive assumptions are
[A2] and [A3] because they exclude B-stationary points that are not strongly stationary.
This fact is not surprising because it is well known that SQP methods typically converge
linearly to such B-stationary points.

It is useful to divide the convergence proof into two parts. First, we consider the case
where complementarity holds for some iterate k, i.e. Φ(xk

1, x
k
2) = 0. In this case, the SQP

method applied to (1.3) is shown to be equivalent to SQP applied to the relaxed NLP
(3.2). In the second part, we assume that Φ(xk

1, x
k
2) > 0 for all k. Under the additional

assumption that all QP approximations remain consistent, superlinear convergence can
again be established.
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5.1 Local Convergence for Exact Complementarity

In this section we make the additional assumption that

[A6] Φ(xk
1, x

k
2) = 0 and (xk, µk) is sufficiently close to a strongly stationary point.

Assumption [A6] implies that for given index sets Xj := Xj(x
k) :=

{
i|xk

ji = 0
}

, j =
1, 2, the following holds:

xk
1j = 0 ∀j ∈ X⊥

2

xk
2j = 0 ∀j ∈ X⊥

1

xk
1j = 0 or xk

2j = 0 ∀j ∈ D = X1 ∩ X2.

In particular, it is not necessary to assume that both xk
1i = 0 and xk

2i = 0 for i ∈ D∗.
Thus it may be possible that X1 6= X ∗

1 (and similarly for X2). An important consequence
of [A6] is that X1, X2 satisfy

X ∗⊥
1 ⊂ X⊥

1 ⊂ X ∗⊥
1 ∪ D∗

X ∗⊥
2 ⊂ X⊥

2 ⊂ X ∗⊥
2 ∪ D∗

D ⊂ D∗,

(5.1)

that is, the indices X ∗⊥
1 and X ∗⊥

2 of the nondegenerate complementarity constraints have
been identified correctly.

Next, it is shown that SQP applied to (1.3) is equivalent to SQP applied to the relaxed
NLP (3.2). For a given partition (X⊥

1 ,X⊥
2 ,D), an SQP step for the relaxed NLP (3.2) is

obtained by solving the QP

(QPR(xk))






minimize
d

gkT

d + 1
2
dT W kd

subject to ck
E + AkT

E d = 0

ck
I + AkT

I d ≥ 0
d1j = 0 ∀j ∈ X⊥

2 and xk
1j + d1j ≥ 0 ∀j ∈ X2

d2j = 0 ∀j ∈ X⊥
1 and xk

2j + d2j ≥ 0 ∀j ∈ X1.

The following proposition shows that SQP applied to the relaxed NLP converges quadrat-
ically and identifies the correct index sets X ∗

1 and X ∗
2 in one step. Its proof can be found

in [17, Proposition 5.2].

Proposition 5.2 Let [A1]–[A6] hold, and let xk be sufficiently close to x∗. Consider
the relaxed NLP for any index sets X1, X2 (satisfying (5.1) by virtue of [A6]). Then it
follows that

1. there exists a neighborhood U of (z∗, λ∗, ν∗
1 , ν

∗
2) and a sequence of iterates generated

by SQP applied to the relaxed NLP (3.2), {(xl, λl, νl
1, ν

l
2)}l>k, that lies in U and

converges Q-quadratically to (x∗, λ∗, ν∗
1 , ν

∗
2);

2. the sequence {xl}l>k converges Q-superlinearly to x∗; and

3. X l
1 = X ∗

1 and X l
2 = X ∗

2 for l > k.
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Next, it is shown that the QP approximation to the relaxed NLP (QPR(xk)) and the
QP approximation to the NCP formulation (QP k) generate the same sequence of steps.
The next lemma shows that the solution of (QPR(xk)) is feasible in (QP k).

Lemma 5.3 Let Assumptions [A1]–[A6] hold. Then it follows that a step d is feasible
in (QPR(xk)) if and only if it is feasible in (QP k).

Proof. (QPR(xk)) and (QP k) differ only in the way the complementarity constraint is
treated. Hence we need only to prove the equivalence of those constraints. Let j ∈ X⊥

2 .

Then it follows that x1j = 0, and ∂Φk

∂x1j
= τ1j > 0, and ∂Φk

∂x1j
= 0. Hence, (QP k) contains

the constraints
τ1jd1j ≤ 0 and d1j ≥ 0 ⇔ d1j = 0.

Similarly, we can show that the constraints are equivalent for j ∈ X⊥
1 . Let j ∈ D. Then

it follows that (QP k) contains the constraints d2j ≥ 0 and d1j ≥ 0, which are equivalent
to the constraints of (QPR(xk)). The equivalence of the feasible sets follows because
(X⊥

1 ,X⊥
2 ,D) is a partition of {1, . . . , p}. �

The next lemma shows that the solution of the two QPs are identical and that the
multipliers are related.

Lemma 5.4 Let Assumptions [A1]–[A6] hold. Let (λ, ν̂1, ν̂2) be the Lagrange multipliers
of (QPR(xk,X )) (corresponding to a step d). Then it follows that the multipliers of (QP k),
corresponding to the same step d are µ = (λ, ν1, ν2, ξ), where

ν1i = ν̂1i > 0, ∀i ∈ D (5.2a)

ν2i = ν̂2i > 0, ∀i ∈ D (5.2b)

ξi = −min(
ν̂1i

τ1i

,
ν̂2i

τ2i

, 0) (5.2c)

ν1i = ν̂1i − ξiτ1i, ∀i ∈ X⊥
2 (5.2d)

ν2i =ν̂2i − ξiτ2i, ∀i ∈ X⊥
1 , (5.2e)

where τji is given in (3.6–3.7). Conversely, given a solution d and multipliers µ of (QP k),
(5.2) shows how to construct multipliers so that (d, λ, ν̂1, ν̂2) solves (QPR(xk,X )).

Proof. We equate the first-order conditions of (QPR(xk)) and (QP k) and obtain

gk + W kd − Akλ =




0
ν̂1

ν̂2



 =




0

ν1 −∇x1
Φξ

ν2 −∇x2
Φξ



 .

We distinguish three cases:
Case 1 (j ∈ D): It follows from (5.1) that j ∈ D∗, which implies that ν̂1j, ν̂2j > 0 for
xk sufficiently close to x∗ by assumption [A4]. Moreover, ∂Φ

∂x1j
= ∂Φ

∂x2j
= 0, and hence,

ν1j = ν̂1j > 0, ν2j = ν̂2j > 0, and ξj = 0 are valid multipliers for (QP k).
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Case 2 (j ∈ X⊥
1 ): We distinguish two further cases. If j ∈ D∗, then a similar argument

to Case 1 shows that ν1j = ν̂1j > 0, ν2j = ν̂2j > 0, and ξj = 0. On the other hand, if

j ∈ X ∗⊥
1 , then it follows that ∂Φ

∂x1j
= 0, and ∂Φ

∂x2j
= τ2j > 0 is bounded away from zero.

Thus, ν1j = ν̂1j = 0, and ν2j = ν̂2j − τ2jξj, and we can always choose ν2j, ξj ≥ 0. We will
show later that the QP solver in fact chooses either ν2j > 0, or ξj > 0.
Case 3 (j ∈ X⊥

2 ) is similar to Case 2. �

Next, it is shown that both QPs have the same solution in a neighborhood of d = 0;
its proof can be found in [17, Lemma 5.6].

Lemma 5.5 The solution d of (QPR(xk)) is the only strict local minimizer in a neigh-
borhood of d = 0 and its corresponding multipliers (λ, ν̂1, ν̂2) are unique. Moreover, d is
also the only strict local minimizer in a neighborhood of d = 0 of (QP k).

The next theorem summarizes the results of this section.

Theorem 5.6 If Assumptions [A1]–[A6] hold, then SQP applied to (1.3) generates a
sequence {(xl, λl, νl

1, ν
l
2, ξ

l)}l>k that converges Q-quadratically to {(x∗, λ∗, ν∗
1 , ν

∗
2 , ξ

∗)} of
(3.4), satisfying strong stationarity. Moreover, the sequence {xl}l>k converges Q-superlinearly
to x∗ and Φ(xl

1, x
l
2) = 0 for all l ≥ k.

Proof. Under Assumptions [A1]–[A4], SQP converges quadratically when applied to the
relaxed NLP (3.2). Lemmas 5.3–5.5 show that the sequence of iterates generated by this
SQP method is equivalent to the sequence of steps generated by SQP applied to (1.3).
This implies Q-superlinear convergence of {xl}l>k. Convergence of the multipliers follows
by considering (5.2). Clearly, the multipliers in (5.2a) and (5.2b) converge, as they are
just the multipliers of the relaxed NLP, which converge by virtue of Proposition 5.2. Now
observe that (5.2c) becomes

ξk+1
i = −min

(
ν̂k+1

1i

τ k+1
1i

,
ν̂k+1

2i

τ k+1
2i

, 0

)
.

The right-hand side of this expression converges because ν̂k+1
1i , ν̂k+1

2i converge and the
denominators τ k+1

i are bounded away from zero for i ∈ X ∗⊥
1 ,X ∗⊥

2 . Finally, (5.2d) and
(5.2e) converge by a similar argument.

Φ(xl
1, x

l
2) = 0 , ∀l ≥ k, follows from the convergence of SQP for the relaxed NLP (3.2)

and the fact that SQP retains feasibility with respect to linear constraints. Assumption
[A4] ensures that dk

1j = dk
2j = 0,∀j ∈ D∗, since νk

1j, ν
k
2j > 0 for biactive complementarity

constraints. Thus SQP will not move out of the corner and stay on the same face. �

5.2 Local Convergence for Nonzero Complementarity

This section shows that SQP converges superlinearly even if complementarity does not
hold at the starting point, that is, if Φ(xk

1, x
k
2) > 0. It is shown in [17] that the QP
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approximation to (1.3) with x1ix2i ≤ 0 can be inconsistent arbitrarily close to a strongly
stationary point. Similar examples can be constructed for the NCP functions in Section 2.
Only the min-function and its piecewise smooth variations guarantee feasibility of the QP
approximation near a strongly stationary point (see Proposition 3.6).

Note that by virtue of the preceding section, any component for which φ(xk
1i, x

k
2i) = 0

can be removed from the complementarity constraints and instead be treated as part of
the general constraints, as φ(xl

1i, x
l
2i) = 0 for all l ≥ k. Hence, it can be assumed without

loss of generality that Φ(xk
1, x

k
2) > 0 for all k.

In the remainder of the proof, it is assumed without loss of generality that X ∗⊥
1 = ∅,

that is, the solution can be partitioned as

x∗
2 =

(
x∗

21

x∗
22

)
=

(
0

x∗
22

)
, (5.3)

where x∗
22 > 0, and x∗

1 = 0 is partitioned in the same way. This simplifies the notation in
the proof.

SQP methods can take arbitrary steps when encountering infeasible QP approxima-
tions. In order to avoid the issue of infeasibility, the following assumption is made that
often holds in practice.

[A7] All QP approximations (QP k) are consistent for xk sufficiently close to x∗.

This is clearly an undesirable assumption because it is an assumption on the progress of
the method. However, Proposition 3.6 shows that [A7] holds for the NCP reformulations
involving the min-function. In addition, it is shown in [17] that [A7] is satisfied for MPCCs
with vertical complementarity constraints that satisfy a mixed-P property. Moreover, the
use of the perturbation makes it less likely that the SQP method will encounter infeasible
QP subproblems.

The key idea behind our convergence result is to show convergence for any “basic”
active set. To this end, we introduce the set of active complementarity constraints

C(x) := {i : φ(x1i, x2i) = 0} .

Let I(x) := I ∩ A(x), and let the basic constraints be

B(x) := E ∪ I(x) ∪ X1(x) ∪ X2(x) ∪ C(x).

The set of strictly active constraints (defined in terms of the basic multiplier, µ, see (3.8))
is given by

B+(x) := {i ∈ B(x) | µi 6= 0} .

Moreover, let Bk
+ denote the matrix of strictly active constraint normals at x = xk, namely,

Bk
+ :=

[
ak

i

]
i∈B+(xk)

,

where ak
i is the constraint normal of constraint i ∈ B+(xk).

The failure of any constraint qualification at a solution x∗ of the equivalent NLP (1.3)
implies that the active constraint normals at x∗ are linearly dependent. However, the
constraint normals corresponding to strictly active constraints are linearly independent,
as shown in the following lemma.
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Lemma 5.7 Let Assumptions [A1]–[A4] hold, and let x∗ be a solution of the MPCC
(1.1). Let I∗ denote the set of active inequalities cI(x), and consider the matrix of active
constraint normals at x∗,

B∗ =





0 0 0

A∗
E A∗

I∗ I 0

(
0

−∇x12
Φ2

)

0

[
I
0

] (
0
0

)




, (5.4)

where we have assumed without loss of generality that X⊥∗

1 = ∅. The last column is the
gradient of the complementarity constraint. Then it follows that B is linearly dependent
and that

span〈
[

0
I2

]
〉 = span〈

[
0

−∇x12
Φ2

]
〉. (5.5)

Moreover, any submatrix of columns of B has full rank provided that it contains [A∗
E A∗

I ]
and a linearly independent set from the columns in (5.5).

Proof. The structure of the gradient of the NCP functions and (5.3) show that (5.5)
holds. Thus B∗ is linearly dependent. MPCC-LICQ shows that B∗ without the columns
corresponding to the NCP functions has full rank. By choosing a linearly independent
subset from the columns in (5.5), we get a basis. �

Lemma 5.7 shows that the normals corresponding to the basic multiplier are linearly
independent despite the fact that the active normals are linearly dependent. The proof
shows that in order to obtain a linearly independent basis, any column of x12 = 0 can
be exchanged with the corresponding normal of the complementarity constraint. This
matches the observation that the basic multipliers of the simple bounds and the corre-
sponding complementarity constraint are complementary (see (3.9)).

Next, it is shown that for xk sufficiently close to x∗, if both the normals corresponding
to x1i ≥ 0 and φ(x1i, x2i) ≤ 0 are active, then at the next iteration exact complementarity
holds for that component and φ(xl

1i, x
l
2i) = 0 and for all subsequent iterations by virtue

of Lemma 5.3. Thus, the QP solver cannot continue to choose a basis that is increasingly
ill-conditioned.

Lemma 5.8 Let Assumptions [A1]–[A5] hold, and let xk be sufficiently close to x∗.
Partition the NCP function Φ = (Φ1, Φ2)

T in the same way as x1, x2 in (5.3). Consider
the matrix of active constraint normals at xk,

B =





0 0 0 0

Ak
E Ak

I

[
I 0
0 I

] [
−∇x11

Φ1

0

] [
0

−∇x12
Φ2

]

[
I
0

] [
−∇x21

Φ1

0

] [
0

−∇x22
Φ2

]




.

Then it follows that the columns corresponding to the matrix ∇xΦ2 have the structure
(0, 0,−τ, 0,−ε)T , where τ = O(1) and ε > 0 is small. If the optimal basis of (QP k)
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contains both a column i of x1i ≥ 0 and φ(x1i, x2i) ≤ 0, then it follows that

xk
1i > 0 and xk+1

1i xk+1
2i = 0.

Moreover, there exists c > 0 such that

‖
(
xk+1, µk+1

)
− (x∗, µ∗) ‖ ≤ c ‖

(
xk, µk

)
− (x∗, µ∗) ‖. (5.6)

Proof. The first part follows by observing that for xk close to x∗, x12 ≥ 0 is small
and x22 = O(1), which implies the form of the columns. Exchanging them with the
corresponding columns of x12 ≥ 0 results in a nonsingular matrix by Lemma 5.7. The
second part follows from the nonsingularity assumption [A5] (if xk

1i = 0, then the basis
would be singular) and the fact that if the column corresponding to x1i ≥ 0 is basic, then
xk+1

1i = xk
1i + d1i = 0 holds.

The third part follows by observing that Assumptions [A2] and [A3] imply that the re-
laxed NLP satisfies an LICQ and a SOSC. Hence, the basis B without the final column
gives a feasible point close to xk. Denote this solution by (x̂, µ̂), and let the corresponding
step be denoted by d̂. Clearly, if this step also satisfies the linearization of the comple-
mentarity constraint, that is, if

Φk + ∇x1
ΦkT

d̂1 + ∇x2
ΦkT

d̂2 ≤ 0,

then (5.6) follows by second-order convergence of SQP for the relaxed NLP. If, on the
other hand,

Φk + ∇x1
ΦkT

d̂1 + ∇x2
ΦkT

d̂2 > 0,

then the SQP step of the relaxed NLP is not feasible in (QP k). In this case consider the
following decomposition of the SQP step. Let

d̂n =





0

d̂1(
d̂21

0

)



 =





0
−xk

1(
−xk
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0

)





be the normal component, and let d̂t := d̂ − d̂n be the tangential component. Then it
follows that the step of (QP k) satisfies dk = d̂n + σd̂t for some σ ∈ [0, 1], and the desired
bound on the distance follows from the convergence of d̂. �

Thus, if both the normals corresponding to φ(x1i, x2i) ≤ 0 and x1i ≥ 0 are basic,
then xk+1

1i xk+1
2i = 0 for a point close to x∗. This component can then be removed from

the complementarity constraint, as Lemma 5.3 shows that xk+l
1i xk+l

2i = 0 for all l ≥ 1. In
the remainder we can therefore concentrate on the case that xk

1ix
k
2i > 0 for all iterates k.

Next, it is shown that for xk sufficiently close to x∗, the basis at xk contains the equality
constraints E and the active inequality constraints I∗.

Lemma 5.9 Let xk be sufficiently close to x∗, and let Assumptions [A1]–[A5] and [A7]
hold. Then it follows that the optimal basis B of (QP k) contains the normals Ak

E and Ak
I∗.
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Proof. This follows by considering the gradient of (QP k),

0 = ∇fk + W kdk −∇ckT

λk+1 −




0

νk+1
1 − ξk+1∇x1

Φk

νk+1
2 − ξk+1∇x2

Φk



 ,

where W k is the Hessian of the Lagrangian. For xk sufficiently close to x∗, it follows from
[A4] that λk+1

i 6= 0 for all i ∈ E ∪ I∗. �

Thus, as long as the QP approximations remain consistent, the optimal basis of (QP k)
will be a subset of B satisfying the conditions in Lemma 5.8. The key idea is to show that
for any such basis, there exists an equality constraint problem for which SQP converges
quadratically. Since there is only a finite number of basis, this implies convergence for
SQP.

We now introduce the reduced NLP , which is an equality constraint NLP corresponding
to a basis with properties as in Lemma 5.8. Assume that x∗ can be partitioned as in (5.3),
and define the reduced NLP as

minimize
x

f(x)

subject to cE(x) = 0
cI∗(x) = 0
x11 = 0
x21 = 0
x1i = 0 or Φ(x1i, x2i) = 0 ∀i ∈ X⊥

2 ,

where the last constraint means that either x1i = 0 or Φ(x1i, x2i) = 0 but not both are
present in the reduced NLP. Note that according to (5.3), X⊥

1 = ∅. The key idea will be
to relate the reduced NLP to a basis satisfying the conditions of Lemma 5.8. Next, it is
shown that any reduced NLP satisfies an LICQ and an SOCS.

Lemma 5.10 Let Assumptions [A1]–[A4] and [A7] hold. Then it follows that any re-
duced NLP satisfies LICQ and SOSC.

Proof. Lemma 5.8 and the fact that either x1i = 0 or Φ(x1i, x2i) = 0 are active shows
that the normals of the equality constraints of each reduced NLP are linearly independent.
The SOSC follows from the MPCC-SOSC and the observation that the MPCC and the
reduced NLP have the same null-space. �

Thus, applying SQP to the reduced NLP results in second-order convergence. Next,
we observe that any nonsingular basis B corresponds to a reduced NLP. Unfortunately,
relaxing the complementarity constraints in (QP k) means that second-order convergence
does not follow directly. However, the particular form of perturbation allows a superlinear
convergence result to be established.

Proposition 5.11 Let Assumptions [A1]–[A4] and [A7] hold. Then it follows that an
SQP method that relaxes the complementarity as in (QP k) converges superlinearly to x∗

for any reduced NLP.
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Proof. Assume that δ = 0, so that no perturbation is used. Lemma 5.10 shows that
the reduced NLP satisfy LICQ and SOSC and, therefore, convergence of SQP follows. In
particular, it follows that for a given reduced NLP corresponding to a basis B, there exists
a constant cB > 0 such that

‖
(
xk+1, µk+1

)
− (x∗, µ∗) ‖ ≤ cB ‖

(
xk, µk

)
− (x∗, µ∗) ‖2. (5.7)

If the right-hand side of the complementarity constraint is perturbed (i.e., δ > 0), then
consider the Newton step corresponding to the QP approximation of the relaxed NLP
about xk. In particular, this step satisfies dk

N = −xk
1, and it follows that the perturbation

is o(‖dN‖), where dN is the Newton step. Hence, superlinear convergence follows using
the Dennis-Moré characterization theorem (e.g., [13, Theorem 6.2.3]). �

We note that the SQP method based on (QP k) ignores the curvature corresponding
to φ(x12, x22) = 0. However, it is easy to extend the proof of Proposition 5.11 to allow
∇2Φ to be included. The key idea is to show that the limit of the projected Hessian
of ∇Φ∗ is zero. Letting Zk be a basis of the nullspace of (QP k), we need to show that
limk→∞ Zk∇2Φ∗ = 0, which implies superlinear convergence (see, e.g., [13, Chapter 12.4]).
It can be shown that the Hessian of the NCP functions is unbounded in the nullspace of
the active constraints of (QP k).

Summarizing the results of this section, we obtain the following theorem.

Theorem 5.12 Let Assumptions [A1]–[A5] and [A7] hold. Then it follows that SQP
applied to the NLP formulation (1.3) of the MPCC (1.1) converges superlinearly near a
solution (x∗, µ∗).

Proof. Proposition 5.11 shows that SQP converges superlinearly for any possible choice
of basis B, and Assumption [A7] shows that (QP k) is consistent and remains consistent.
Therefore, there exists a basis for which superlinear convergence follows. Thus for each
basis,

lim
k→∞

‖(xk+1, µk+1) − (x∗, µ∗)‖
‖(xk, µk) − (x∗, µ∗)‖ = 0

follows. Since there are a finite number of bases, this condition holds independent of the
basis and SQP converges superlinearly. �

5.3 Discussion of Proofs

Several interesting observations arise from the convergence proofs of the preceding two
sections. The curvature of the complementarity constraint Φ(x1, x2) can be ignored with-
out losing fast local convergence. This fact is not surprising because the complementarity
constraint

0 ≤ x1 ⊥ x2 ≥ 0

has zero curvature at any feasible point with x1i+x2i > 0. At the origin, on the other hand,
the curvature is infinite. However, in this case the curvature does not affect convergence,
as the reduced Hessian is zero.
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If the min-function (2.6) or its piecewise smooth variants (2.10) or (2.11) are used,
then the proof simplifies, as near a strongly stationary point, ∇Φx2

= 0. In addition, the
linearizations are consistent even without the perturbation (3.3) and convergence follows
from the convergence of the relaxed NLP. This fact can be interpreted as a constraint
qualification for the NCP formulations using (2.6) or (2.10) or (2.11) at strongly stationary
points.

The conclusions and proofs presented in this section also carry through for linear
complementarity constraints but not for general nonlinear complementarity constraints.
The reason is that the implication

xk
1ix

k
2i = 0 ⇒ xk+1

1i xk+1
2i = 0 (5.8)

holds for linear complementarity problems but not for nonlinear complementarity prob-
lems because in general, an SQP method would move off a nonlinear constraint. This
is one reason for the introduction of slacks to deal with more general complementarity
constraints. In addition, (5.8) can be made to hold in inexact arithmetic by taking care of
handling simple bounds appropriately. The same is not true if one expression is a linear
equation.

6 Numerical Results

This section describes our experience with an implementation of the different NCP for-
mulation of the MPCC (1.1) in our sequential quadratic programming solver. Our SQP
method promotes global convergence through the use of a filter. The filter accepts a trial
point whenever the objective or the constraint violation is improved compared with all
previous iterates [14, 15, 18].

6.1 Preliminaries

The solver includes an AMPL [19] interface that introduces slacks to formulate general
complementarity constraints in the form (1.1) and handles the reformulation to the NLP
(1.3) automatically. The interface also computes the derivatives of the NCP functions
and relaxes the linearizations according to (3.3). A user can choose between the various
formulations and set parameters such as δ, κ by passing options to the solver.

The test problems come from MacMPEC [22], a collection of some 150 MPCC test
problems [16] from a variety of backgrounds and sizes. The numerical tests are performed
on a PC with an Intel Pentium 4 processor with 2.5 GHz and 512 KB RAM running Red
Hat Linux version 7.3. The AMPL solver interface is compiled with the Intel C++ com-
piler version 6.0, and the SQP/MPCC solver is compiled with the Intel Fortran Compiler
version 6.0.

Not all 150 problems in MacMPEC are included in this experiment. We have delib-
erately left out a number of 32× 32 discretizations of the incidence set identification and
packaging problems. These problems are similar to one another (a small number of them
are included) but take a long time to run. This is especially true for the formulations that
do not lump the complementarity constraint. In this sense, the results would have been
even better for the formulation using the scalar product form.
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To determine reasonable values for the various parameters introduced in the definition
of the NCP functions, we run a small representative selection of MPCC problems. The
overall performance is not very sensitive to a particular parameter choice. No attempt
was made to “optimize” the parameter values; rather, we were interested in determining
default values that would work well. Table 1 displays the default parameter values.

Table 1: Default parameter values for numerical experiments.

Parameter Description Default
δ relaxation of linearization in (3.3) 0.1
κ relaxation of linearization in (3.3) 1.0

σNR smoothing of natural residual (2.9) 32.0
λ Chen-Chen-Kanzow parameter (2.8) 0.7
σl slope of linearized min-function (2.10) 4.0
σq slope of quadratic min-function (2.11) 2.0

While the number of parameters may appear unreasonably large, each formulation
requires only three parameters to be set. The choice of λ = 0.7 also agrees with [25],
where λ = 0.8 is suggested. Note that since δ = 0.1, the Chen-Chen-Kanzow function is
relaxed further.

Care has to be taken when computing the smoothed natural residual function (2.9);
it can be affected by cancellation error, as the following example illustrates. Suppose
a = 104 and b = 10−4 and that single-precision arithmetic is used. Then it follows that

2φNRs(a, b) = (104 + 10−4) −
√

(104 − 10−4)2 +
1

σNR

float' 104 −
√

108 = 0,

that is cancellation errors causes (2.9) to declare an infeasible point complementary. This
situation can be avoided by employing the same trick used in reformulating the Fischer-
Burmeister function [25], giving rise to

φNRs(a, b) =
1

2

(
4σNR−1

σNR

)

a + b +
√

(a − b)2 + ab
σNR

. (6.1)

Derivative values can be computed in a similarly stable fashion.

6.2 Performance Plots and Results

Results are provided in two forms. The performance plots [9] in Figures 3 and 4 show
the relative performance of each formulation in terms of iteration count and CPU time.
These plots can be interpreted as follows. For every solver s and every problem p, the
ratio of the number of iterations (or CPU time) of solver p on problem s over the fastest
solve for problem s is computed and the base 2 logarithm is taken,

log2

(
# iter(s, p)

best iter(p)

)
.
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Figure 3: Performance (iterations) plots for different NCP formulations

By sorting these ratios in ascending order for every solver, the resulting plots can be
interpreted as the probability that a given solver solves a problem within a certain multiple
of the fastest solver.

Failures (see next section) are handled by setting the iteration count and the CPU
time to a large number. This strategy ensures that the robustness can also be obtained
from the performance plots. The percentage of MPCC problems solved is equivalent to
the right asymptote of the performance line for each solver.
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Figure 4: Performance (CPU time) plots for different NCP formulations

6.3 Failures of the NCP Formulations

Solving MPCCs as NLPs is surprisingly robust. We observe very few failures, even though
many problems are known to violate the assumptions made in this paper. Even the worst
NCP formulation failed only on eight problems. Below, we list the problems that failed
together with the reason for the failure.
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The NLP solver can fail in three ways. The first failure mode occurs when the trust-
region radius becomes smaller than the solver tolerance (1E-6) and no further progress
can be made. This is referred to in the table below as “TR too small.” Such a failure
often happens at a solution where the KKT error cannot be reduced to sufficient accuracy.
The second failure mode occurs if the QP solver detects inconsistent linearizations near
a feasible point. This is referred to as “infeasible QP.” Note that the fact that MPCCs
violate MFCQ implies that linearizations can become inconsistent arbitrarily close to a
feasible point. Third, “iter. limit” refers to failures in which the solver reached its iteration
limit (1000) without confirming optimality. The following failures were reported:

1. Scalar product form xT
1 x2 ≤ 0 2 failures

TR too small : tollmpec1
infeasible QP : design-cent-3

2. Bilinear form x1ix2i ≤ 0 5 failures

infeasible QP : design-cent-3, incid-set1c-32, pack-rig2c-32, pack-rig2p-16
iter. limit : bem-milanc30-s

3. min-function min(x1i, x2i) ≤ 0 6 failures

TR too small : ex9.2.2
infeasible QP : pack-comp1p-8, pack-comp1p-16
iter. limit : pack-comp2p-8, pack-comp2p-16, qpec-200-2

4. Linearized min-function (2.10) 4 failures

TR too small : jr2, qpec-200-3
infeasible QP : bem-milanc30-s
iter. limit : qpec-200-2

5. Quadratically smoothed min-function (2.11) 8 failures

TR too small : jr2
infeasible QP : incid-set2c-32
iter. limit : ex9.2.2, gauvin, incid-set1c-32, qpec-100-4, qpec-200-1, qpec-200-3

6. Fischer-Burmeister function (2.5) 7 failures

infeasible QP : design-cent-3, ralphmod
iter. limit : pack-comp1c-8, pack-rig1-16, pack-rig1c-16, pack-rig2-16,

: pack-rig2c-16

7. Smoothed natural residual function (2.9) 1 failures

TR too small : bem-milanc30-s

8. Chen-Chen-Kanzow function (2.8) 5 failures

infeasible QP : pack-comp1p-8, qpec-200-3, pack-comp1c-8, pack-rig2p-16
iter. limit : bem-milanc30-s
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This list contains some problems known not to have strongly stationary limit points. For
instance, ex9.2.2, ralph1, and scholtes4 have B-stationary solutions that are not strongly
stationary. Problem gauvin has a global minimum at a point where the lower-level problem
fails a constraint violation, so the formulation as an MPCC is not appropriate.

In the tests, two problems also gave rise to IEEE errors in the AMPL function evalua-
tions, specifically the Chen-Chen-Kanzow function on pack-rig1-16 and pack-rig1c-32.
Since this type of error is caused not by the method but by the model, they are not counted
in the errors.

6.4 Interpretation of the Results

The results confirm that solving MPCCs as NLPs is very robust. In particular, the scalar
product and the smoothed natural residual function are very robust, solving all but two
problems and one problem, respectively.

The results for the min-function, on the other hand, are disappointing. Recall that
these functions are theoretically attractive because they do not require an additional
assumption to be made on the feasibility of QP approximations. This property makes the
number of failures (6/4/8) for the min-function and its smoothed variants disappointing.

The best results in terms of performance and robustness were obtained for the scalar
product formulation and the smoothed natural residual function. The performance plots
in Figures 3 and 4 clearly show that these formulations are superior. In particular, the
scalar product function is significantly faster than any other approach.

The formulation using xT
1 x2 has two main advantages that may explain its superiority.

First, it introduces only a single additional constraint, which reduces the size of the NLP
to be solved. Moreover, this formulation requires less storage for the QP basis factors.
Second, by lumping the complementarity conditions, the formulation allows a certain
degree of nonmonotonicity in the complementarity error of each individual x1ix2i and
reduces the overall complementarity error, xT

1 x2, only.
The worst results in terms of both robustness and efficiency are obtained for the

Fischer-Burmeister function and the quadratically smoothed min-function. These formu-
lations fail on seven and eight problems, respectively and are significantly slower than the
other formulations. The Chen-Chen-Kanzow function improves on the Fischer-Burmeister
function. This observation is not surprising because φCCK is a convex combination of the
Fischer-Burmeister function and the more successful bilinear formulation. The worse be-
havior of φFB might be due to the fact that its linearized feasible region is smaller than
for the bilinear form. This is also supported by the type of failures that can be observed
for the Fischer-Burmeister function, which has many infeasible QP terminations.

Analyzing the solution characteristics of the scalar product form, we observe that only
four problems have a large value of ξ. This fact shows that the SQP method converges
to strongly stationary points for the remaining problems, as a bounded complementarity
multiplier is equivalent to strong-stationarity (Theorem 3.7). The four problems for which
ξ is unbounded are ex9.2.2, ralph1, ralphmod, and scholtes4. The last problem is known
to violate an MPCC-MFCQ at its only stationary point, and the limit is B-stationary but
not strongly stationary, and SQP converges linearly for this problem [17].

In addition, it can be observed that the complementarity error is exactly zero at most
solutions. The reasons for this behavior are as follows:
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1. Complementarity occurs only between variables. Thus, if a lower bound is in the
active set, then the corresponding residual can be set to zero even in inexact arith-
metic.

2. Many problems in the test set have a solution where ξ = 0. This indicates that
the complementarity constraint xT

1 x2 ≤ 0 is locally redundant. Hence, exact com-
plementarity is achieved as soon as the SQP method identifies the correct active
set.

3. Our QP solver resolves degeneracy by making nearly degenerate constraints exactly
degenerate and then employing a recursive procedure to remove degeneracy. This
process of making nearly degenerate constraints exactly degenerate forces exact
complementarity. Consider any nondegenerate index for which x∗

2i > 0 = x∗
1i, and

assume that xk
1i > 0 is small. The QP solver resolves the “near” degeneracy between

the lower bound x1i ≥ 0 and the complementarity constraint by perturbing x1i to
zero. Thus exact complementarity is achieved.

This behavior is reassuring and makes the NLP approach to MPCCs attractive from a
numerical standpoint.

7 Conclusions

Mathematical programs with complementarity constraints (MPCCs) are an emerging area
of nonlinear optimization. Until recently researchers had assumed that the inherent de-
generacy of MPCCs makes the application of standard NLP solvers unsafe. In this paper
we show how MPCCs can be formulated as NLPs using a range of so-called NCP func-
tions. Two new smoothed min-functions are introduced that exhibit desirable theoretical
properties comparable to a constraint qualification.

In contrast to other smoothing approaches, the present formulations are exact in the
sense that KKT points of the reformulated NLP correspond to strongly stationary points
of the MPCC. Thus there is no need to control a smoothing parameter, which may be
problematic.

It is shown that SQP methods exhibit fast local convergence near strongly stationary
points under reasonable assumptions. This behavior is observed in practice on a large
range of MPCC problems. The numerical results favor a lumped formulation in which
all complementarity constraints are lumped into a single constraint. A new smoothed
version of the min-function is also shown to be very robust and efficient. On the other
hand, results for other standard NCP functions such as the Fischer-Burmeister function
are disappointing.

The use of the simple bounds in the reformulation of complementarity (1.2) allows an
alternative NLP formulation of the MPCC (1.1). This formulation lumps the nonlinear
NCP functions into a single constraint, similar to xT

1 x2 ≤ 0. Thus, an alternative NLP is
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given by
minimize f(x)
subject to cE(x) = 0

cI(x) ≥ 0
x1, x2 ≥ 0,
eT Φ(x1, x2) ≤ 0.

(7.1)

It is straightforward to see, that (7.1) is equivalent to (1.1). The convergence proof is
readily extended to this formulation. We note that (7.1) has several advantages over (1.3).
It reduces the number of constraints in the NLP. Moreover, our experience indicates that
the lumped version of the bilinear form, xT

1 x2 ≤ 0, often performs better than the separate
version using x1ix2i ≤ 0. One reason may be that the lumped version allows nonmonotone
changes in the complementarity residual in individual variable pairs as long as the overall
complementarity is reduced.

Some open questions remain. One question concerns the global convergence of SQP
methods from arbitrary starting points. Any approach to this question must take into
account the globalization scheme and, in addition, provide powerful feasibility restoration.
A related question is whether SQP methods can avoid convergence to spurious stationary
points. Such points are sometimes referred to as C-stationary points even though they
allow the existence of trivial first-order descent direction. At present, we believe that
current SQP methods cannot avoid convergence to C-stationary points. Any attempt to
avoid C-stationarity is likely to require algorithmic modifications.
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A Detailed Results: Iteration Counts

Name xT
1 x2 (2.4) (2.6) (2.10) (2.11) (2.5) (2.9) (2.8)

bard1 3 4 9 13 2 25 3 8
bard1m 3 4 9 13 2 4 3 7
bard2 1 1 1 1 1 1 1 1
bard2m 1 1 1 1 1 1 1 1
bard3 4 4 4 4 4 4 4 4
bard3m 4 4 4 4 4 4 4 4
bar-truss-3 10 9 9 9 9 9 9 9
bem-milanc30-s 62 1000 655 111 245 144 410 1000
bilevel1 2 3 2 3 3 4 3 4
bilevel2 7 2 1 2 5 3 1 2
bilevel3 7 6 6 6 6 6 6 6
bilin 2 6 1 3 3 3 5 3
dempe 58 58 58 58 58 94 58 58
design-cent-1 4 4 4 4 4 4 4 4
design-cent-2 31 21 37 37 29 32 32 60
design-cent-3 191 164 173 173 173 217 185 163
design-cent-4 3 4 3 3 3 4 3 4
desilva 2 2 2 2 2 2 2 2
df1 2 2 2 2 2 2 2 2
ex9.1.1 1 2 1 1 1 3 2 3
ex9.1.10 1 1 1 1 1 1 1 1
ex9.1.2 2 3 1 3 3 3 3 3
ex9.1.3 3 3 1 3 4 3 3 3
ex9.1.4 2 2 2 2 2 2 2 2
ex9.1.5 3 3 1 3 3 3 3 3
ex9.1.6 3 5 2 2 2 4 4 6
ex9.1.7 3 3 1 3 3 3 3 3
ex9.1.8 1 1 1 1 1 1 1 1
ex9.1.9 3 3 2 3 8 3 3 3
ex9.2.1 3 4 6 13 6 8 3 8
ex9.2.2 22 22 76 71 1000 238 3 180
ex9.2.3 1 1 1 1 1 1 1 1
ex9.2.4 3 2 2 2 2 2 2 2
ex9.2.5 7 7 1 17 32 35 4 7
ex9.2.6 3 2 1 1 2 2 1 2
ex9.2.7 3 4 6 13 6 8 3 8
ex9.2.8 3 3 1 1 1 4 3 3
ex9.2.9 3 3 1 3 3 3 3 3
flp2 3 3 1 1 1 3 3 1
flp4-1 3 2 2 2 2 2 2 2
flp4-2 3 2 2 2 2 2 2 2
flp4-3 3 2 2 2 2 2 2 2
flp4-4 3 2 2 2 2 2 2 2
gauvin 3 9 71 71 1000 54 7 6
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Name xT
1 x2 (2.4) (2.6) (2.10) (2.11) (2.5) (2.9) (2.8)

gnash10 8 8 7 7 7 8 7 8
gnash11 8 8 7 7 7 8 7 8
gnash12 9 8 8 8 8 8 8 8
gnash13 13 9 10 10 9 10 10 11
gnash14 10 10 9 9 9 13 10 11
gnash15 18 18 41 11 11 9 10 27
gnash16 16 14 26 12 10 45 11 14
gnash17 17 17 10 10 9 11 10 15
gnash18 15 19 55 73 10 184 11 128
gnash19 10 19 10 8 8 18 14 25
hakonsen 10 10 12 12 10 10 10 10
hs044-i 6 4 2 2 4 4 2 4
incid-set1-16 33 139 78 120 493 85 175 66
incid-set1-8 34 35 56 56 51 42 73 65
incid-set1c-16 34 89 89 93 168 69 109 86
incid-set1c-32 37 309 102 155 1000 127 304 161
incid-set1c-8 39 32 43 38 48 35 67 43
incid-set2-16 19 37 35 35 35 33 24 33
incid-set2-8 48 19 18 18 18 18 18 18
incid-set2c-16 37 36 40 35 305 27 71 32
incid-set2c-32 31 87 71 122 489 71 308 88
incid-set2c-8 24 20 27 23 52 29 25 27
jr1 1 1 1 1 1 1 1 1
jr2 7 7 61 66 114 22 3 18
kth1 1 1 1 1 1 1 1 1
kth2 2 2 2 2 2 2 2 2
kth3 4 5 67 67 67 3 2 4
liswet1-050 1 1 1 1 1 1 1 1
liswet1-100 1 1 1 1 1 1 1 1
liswet1-200 1 1 1 1 1 1 1 1
nash1 3 2 1 1 1 2 1 2
outrata31 8 8 7 7 7 8 7 7
outrata32 8 9 8 8 8 9 8 8
outrata33 7 8 7 7 7 8 7 8
outrata34 6 7 6 6 6 7 6 7
pack-comp1-16 20 39 751 64 37 12 68 12
pack-comp1-8 8 30 152 66 24 36 16 36
pack-comp1c-16 5 38 358 76 40 15 50 15
pack-comp1c-32 13 2 787 238 217 50 344 50
pack-comp1c-8 8 19 68 40 14 40 18 41
pack-comp1p-16 45 72 895 344 81 52 197 31
pack-comp1p-8 53 64 274 219 87 36 200 172
pack-comp2-16 43 49 442 42 38 44 81 35
pack-comp2-8 8 26 10 18 11 8 10 8
pack-comp2c-16 15 23 336 76 30 15 17 15
pack-comp2c-32 7 34 901 193 178 45 175 42
pack-comp2c-8 6 11 18 15 14 6 13 6
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Name xT
1 x2 (2.4) (2.6) (2.10) (2.11) (2.5) (2.9) (2.8)

pack-comp2p-16 32 64 1000 190 142 36 232 48
pack-comp2p-8 60 57 1000 104 77 34 171 58
pack-rig1-16 64 56 81 120 178 1000 90 206
pack-rig1-8 7 10 25 13 17 145 13 148
pack-rig1c-16 11 43 15 57 53 458 19 548
pack-rig1c-32 18 238 42 302 369 99 181 107
pack-rig1c-8 6 8 13 13 10 139 9 142
pack-rig1p-16 28 48 56 164 490 97 118 59
pack-rig1p-8 14 16 22 25 60 144 29 147
pack-rig2-16 7 11 21 42 119 1000 30 421
pack-rig2-8 10 16 10 36 38 254 62 253
pack-rig2c-16 6 11 13 67 96 1000 34 421
pack-rig2c-32 11 71 31 187 222 57 551 55
pack-rig2c-8 6 12 6 15 33 254 23 253
pack-rig2p-16 10 38 79 367 436 301 86 309
pack-rig2p-8 20 16 18 46 89 197 20 196
portfl1 5 7 4 21 6 76 6 84
portfl2 4 6 3 43 8 108 5 162
portfl3 4 6 3 8 5 6 10 6
portfl4 4 4 5 7 5 50 8 48
portfl6 4 6 3 4 5 68 8 66
qpec1 3 2 2 2 2 2 2 2
qpec-100-1 7 34 114 112 251 253 43 300
qpec-100-2 7 24 47 137 427 219 44 43
qpec-100-3 6 20 121 137 713 256 27 105
qpec-100-4 5 9 103 497 1000 176 42 78
qpec2 2 2 1 1 1 2 1 2
qpec-200-1 10 24 87 25 1000 363 38 343
qpec-200-2 10 33 1000 1000 888 182 114 79
qpec-200-3 11 20 160 267 1000 377 62 357
qpec-200-4 5 13 78 95 862 92 34 89
ralph1 27 27 70 70 70 368 5 181
ralph2 11 21 1 1 1 168 3 179
ralphmod 7 37 25 46 114 178 48 21
scholtes1 4 3 3 3 3 3 3 3
scholtes2 2 2 2 2 2 2 2 2
scholtes3 4 6 67 67 67 1 1 1
scholtes4 26 28 71 74 74 239 6 181
scholtes5 1 1 1 1 1 1 1 1
sl1 1 1 1 1 1 1 1 1
stackelberg1 4 4 4 4 4 4 4 4
tap-09 21 23 17 18 18 12 11 23
tap-15 28 19 18 12 18 20 19 20
tollmpec 10 36 22 24 20 79 135 128
tollmpec1 10 50 20 28 24 379 139 108
water-FL 272 237 235 279 333 256 263 356
water-net 131 114 109 125 137 126 190 114
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B Problem Characteristics

This appendix lists the problem characteristics obtained with the scalar product formula-
tion. The headings in Appendix B are explained in Table 2. The definition of the degree
of degeneracy d1, d2, dm is taken from [21]. The corresponding columns refer to first-level
degeneracy, d1, second-level degeneracy, d2, and mixed-degeneracy, dm.

Table 2: Headings for tables in Appendix B.

Heading Description
name problem name in MacMPEC

n number of variables (excluding slacks)
m number of constraints (excluding complementarity)
p number of complementarity constraints

nNLP number of variables after slacks added
k dimension of nullspace at the solution
d1 number of indices i with λi = ci = 0
d2 number of indices i with x1i = x2i = 0
dm number of indices i with x1i = x2i = 0 and (ν1i = 0 or ν2i = 0)

compl complementarity error (xT
1 x2)

ξ multiplier of the complementarity constraint xT
1 x2 ≤ 0
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name n m p nNLP k d1 d2 dm compl ξ

bard1 5 4 3 8 0 3 0 0 0.00 0.762
bard1m 6 4 3 9 0 4 0 0 0.00 0.762
bard2 12 9 3 15 0 2 1 0 0.00 0.00
bard2m 12 9 3 15 0 2 1 0 0.00 0.00
bard3 6 5 1 7 0 2 0 0 0.00 0.00
bard3m 6 5 3 9 0 2 0 0 0.00 1.09
bar-truss-3 35 34 6 35 0 13 0 0 0.00 1.45
bem-milanc30-s 3436 3433 1464 3436 1 1745 1 0 0.00 954.
bilevel1 10 9 6 12 0 6 0 0 0.00 0.150
bilevel2 16 13 8 20 1 5 0 0 0.294E-10 0.00
bilevel3 11 10 3 11 0 5 0 0 0.00 1.09
bilin 8 7 6 14 0 4 0 0 0.00 22.0
dempe 3 2 1 4 0 0 0 0 0.00 0.571E-05
design-cent-1 12 11 3 15 0 6 0 0 0.00 2.17
design-cent-2 13 15 3 16 0 11 0 0 0.00 0.00
design-cent-3 15 11 3 18 0 1 0 1 0.00 0.313E-01
design-cent-4 22 20 8 30 1 12 0 0 0.00 0.845
desilva 6 4 2 8 0 2 0 2 0.00 0.00
df1 2 3 1 3 1 1 0 1 0.00 0.00
ex9.1.1 13 12 5 13 0 4 0 0 0.00 0.00
ex9.1.10 11 9 3 11 0 5 0 2 0.00 0.00
ex9.1.2 8 7 2 8 0 4 0 0 0.00 0.00
ex9.1.3 23 21 6 23 0 14 0 1 0.00 3.20
ex9.1.4 8 7 2 8 0 3 0 1 0.00 0.00
ex9.1.5 13 12 5 13 0 8 0 2 0.00 10.0
ex9.1.6 14 13 6 14 0 6 0 1 0.00 1.56
ex9.1.7 17 15 6 17 0 8 0 1 0.00 5.00
ex9.1.8 11 9 3 11 0 5 0 2 0.00 0.00
ex9.1.9 12 11 5 12 0 5 0 1 0.00 0.444
ex9.2.1 10 9 4 10 0 6 0 1 0.00 0.762
ex9.2.2 9 8 3 9 0 3 0 1 0.183E-12 0.386E+07
ex9.2.3 14 13 4 14 0 5 1 0 0.00 0.00
ex9.2.4 8 7 2 8 0 3 0 0 0.00 1.00
ex9.2.5 8 7 3 8 0 3 0 0 0.00 6.00
ex9.2.6 16 12 6 16 2 4 0 2 0.168E-10 0.500
ex9.2.7 10 9 4 10 0 6 0 1 0.00 0.762
ex9.2.8 6 5 2 6 0 3 0 1 0.00 0.500
ex9.2.9 9 8 3 9 0 7 0 0 0.100E-06 0.00
flp2 4 2 2 6 1 2 0 1 0.00 0.987
flp4-1 80 60 30 110 0 30 0 0 0.00 0.00
flp4-2 110 110 60 170 0 60 0 0 0.00 0.00
flp4-3 140 170 70 210 0 70 0 0 0.00 0.00
flp4-4 200 250 100 300 0 100 0 0 0.00 0.00
gauvin 3 2 2 5 0 1 0 0 0.00 0.250
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name n m p nNLP k d1 d2 dm compl ξ

gnash10 13 12 8 13 1 0 0 0 0.00 0.142
gnash11 13 12 8 13 1 0 0 0 0.00 0.918E-01
gnash12 13 12 8 13 1 0 0 0 0.00 0.397E-01
gnash13 13 12 8 13 1 0 0 0 0.00 0.149E-01
gnash14 13 12 8 13 1 0 0 0 0.00 0.199E-02
gnash15 13 12 8 13 0 3 0 0 0.00 7.65
gnash16 13 12 8 13 0 3 0 0 0.00 1.95
gnash17 13 12 8 13 1 4 0 0 0.00 1.67
gnash18 13 12 8 13 1 4 0 0 0.00 12.7
gnash19 13 12 8 13 0 2 0 0 0.00 2.80
hakonsen 9 8 4 9 0 2 0 0 0.00 0.390
hs044-i 20 14 10 26 0 7 0 1 0.00 5.69
incid-set1-16 485 491 225 485 0 232 0 5 0.00 0.00
incid-set1-8 117 119 49 117 0 54 0 4 0.00 0.00
incid-set1c-16 485 506 225 485 1 233 1 5 0.00 0.00
incid-set1c-32 1989 2034 961 1989 4 165 20 0 0.00 0.00
incid-set1c-8 117 126 49 117 0 59 0 4 0.00 0.00
incid-set2-16 485 491 225 710 3 212 13 0 0.00 0.00
incid-set2-8 117 119 49 166 5 42 7 0 0.00 0.00
incid-set2c-16 485 506 225 710 0 218 12 0 0.00 0.00
incid-set2c-32 1989 2034 961 2950 2 937 24 0 0.00 0.00
incid-set2c-8 117 126 49 166 2 46 6 0 0.00 0.00
jr1 2 1 1 3 1 0 0 0 0.00 0.00
jr2 2 1 1 3 0 0 0 0 0.00 2.00
kth1 2 1 1 2 0 0 1 0 0.00 0.00
kth2 2 1 1 2 1 0 0 0 0.00 0.00
kth3 2 1 1 2 0 0 0 0 0.00 1.00
liswet1-050 152 103 50 202 1 52 0 0 0.00 0.00
liswet1-100 302 203 100 402 1 102 0 0 0.00 0.00
liswet1-200 602 403 200 802 1 202 0 0 0.00 0.00
nash1 6 4 2 8 0 4 0 0 0.00 0.00
outrata31 5 4 4 9 0 0 1 0 0.00 0.164
outrata32 5 4 4 9 1 0 0 0 0.00 0.168
outrata33 5 4 4 9 1 1 0 0 0.00 0.714
outrata34 5 4 4 9 1 1 0 0 0.00 2.07
pack-comp1-16 467 511 225 692 3 268 0 2 0.00 0.00
pack-comp1-8 107 121 49 156 0 113 0 0 0.414E-06 0.00
pack-comp1c-16 467 526 225 692 1 269 0 1 0.00 0.00
pack-comp1c-32 1955 2138 961 2916 3 1108 0 2 0.00 0.00
pack-comp1c-8 107 128 49 156 0 120 0 0 0.414E-06 0.00
pack-comp1p-16 467 466 225 692 5 223 2 0 0.00 0.00
pack-comp1p-8 107 106 49 156 0 83 0 0 0.00 0.00
pack-comp2-16 467 511 225 692 5 268 0 2 0.00 0.00
pack-comp2-8 107 121 49 156 5 62 0 2 0.00 0.00
pack-comp2c-16 467 526 225 692 4 268 0 2 0.00 0.00
pack-comp2c-32 1955 2138 961 2916 16 1058 0 2 0.00 0.00
pack-comp2c-8 107 128 49 156 1 62 0 2 0.00 0.00
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name n m p nNLP k d1 d2 dm compl ξ

pack-comp2p-16 467 466 225 692 13 223 2 0 0.00 0.00
pack-comp2p-8 107 106 49 156 1 47 2 0 0.00 0.00
pack-rig1-16 380 379 158 485 7 208 0 0 0.00 0.00
pack-rig1-8 87 86 32 108 6 47 0 0 0.00 0.00
pack-rig1c-16 380 394 158 485 4 206 0 0 0.00 0.00
pack-rig1c-32 1622 1652 708 2087 2 928 0 0 0.763E-06 0.00
pack-rig1c-8 87 93 32 108 5 47 0 0 0.00 0.00
pack-rig1p-16 445 444 203 550 3 229 2 0 0.00 0.00
pack-rig1p-8 105 104 47 126 5 50 2 0 0.00 0.00
pack-rig2-16 375 374 149 480 1 203 0 0 0.622E-06 0.00
pack-rig2-8 85 84 30 106 5 43 0 0 0.00 0.00
pack-rig2c-16 375 389 149 480 1 219 0 0 0.484E-06 0.00
pack-rig2c-32 1580 1610 661 2045 0 912 0 0 0.240E-06 0.00
pack-rig2c-8 85 91 30 106 2 45 0 0 0.00 0.00
pack-rig2p-16 436 435 194 541 0 215 1 0 0.00 0.00
pack-rig2p-8 103 102 45 124 6 49 2 0 0.00 0.00
portfl1 87 25 12 87 6 6 0 0 0.00 0.897
portfl2 87 25 12 87 0 7 0 0 0.00 0.682
portfl3 87 25 12 87 13 6 0 0 0.00 31.1
portfl4 87 25 12 87 16 5 0 0 0.00 114.
portfl6 87 25 12 87 13 5 0 0 0.00 55.0
qpec1 30 20 20 40 0 10 10 0 0.00 0.00
qpec-100-1 105 102 100 205 0 74 3 0 0.00 10.1
qpec-100-2 110 102 100 210 0 58 4 0 0.00 191.
qpec-100-3 110 104 100 210 0 35 2 0 0.00 4.45
qpec-100-4 120 104 100 220 0 61 4 0 0.00 15.3
qpec2 30 20 20 40 0 0 10 0 0.00 0.667
qpec-200-1 210 204 200 410 0 153 2 0 0.00 158.
qpec-200-2 220 204 200 420 0 118 2 0 0.00 3.42
qpec-200-3 220 208 200 420 0 48 6 0 0.00 35.5
qpec-200-4 240 208 200 440 0 133 7 0 0.00 7.95
ralph1 2 1 1 3 0 0 0 0 0.471E-12 0.486E+06
ralph2 2 1 1 2 1 0 0 0 0.313E-06 2.00
ralphmod 104 100 100 204 0 79 2 0 0.00 0.357E+08
scholtes1 3 1 1 4 0 1 0 0 0.00 0.00
scholtes2 3 1 1 4 0 0 1 0 0.00 0.00
scholtes3 2 1 1 2 0 0 0 0 0.00 1.00
scholtes4 3 3 1 3 0 0 0 0 0.161E-13 0.525E+07
scholtes5 3 2 2 3 2 0 0 0 0.00 0.00
sl1 8 5 3 11 0 5 0 1 0.00 0.00
stackelberg1 3 2 1 3 1 0 0 0 0.00 0.00
tap-09 86 68 32 118 8 29 0 2 0.00 0.687E-07
tap-15 194 167 83 277 0 169 0 27 0.00 57.1
tollmpec 2403 2376 1748 4151 1 1489 1 88 0.00 2.35
tollmpec1 2403 2376 1748 4151 0 2402 0 86 0.00 0.00
water-FL 213 160 44 213 3 46 0 0 0.00 0.163E+04
water-net 66 50 14 66 2 15 0 0 0.00 0.00
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